Code: 20ME6501

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

ADVANCES IN WELDING TECHNOLOGY (HONORS in MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Describe the process of explosion welding	L2	CO2	7 M			
		and explain its principle of operation.						
	b)	Illustrate advantages, disadvantages and	L2	CO1	7 M			
		applications of adhesive bonding.						
		OR						
2	a)	Discus the effect of various parameters of	L2	CO1	7 M			
		Ultrasonic welding on welded joints.						
	b)	Explain the process characteristics,	L2	CO1	7 M			
		advantages and applications of diffusion						
		welding.						
UNIT-II								
3	a)	Explain joint designs in friction welding	L2	CO1	7 M			
		with neat sketch.						
	b)	Discuss the friction welding process	L2	CO1	7 M			
		variables.						

		OR			
4	a)	Discuss the preventive measures of defects	L2	CO1	7 M
		in friction stir welding process.			
	b)	Describe the advancement techniques in	L2	CO1	7 M
		Friction stir welding.			
		UNIT-III			
5	a)	Illustrate the LASER beam welding process	L3	CO3	7 M
		with neat sketch.			
	b)	Explain the mechanism of Key hole	L2	CO3	7 M
		formations and forces acting in key hole in			
		the Laser beam welding process.			
		OR			
6	a)	Illustrate the Electron beam welding process	L3	CO3	7 M
		with neat sketch.			
	b)	Explain the method to identify the defects in	L2	CO3	7 M
		Laser Beam welded components of			
		dissimilar alloys.			
		UNIT-IV			
7	a)	Distinguish between low current and high	L2	CO3	7 M
		current plasma arc welding.			
	b)	Explain the working principle of ultrasonic	L2	CO1	7 M
		spot welding with neat sketch and discuss			
		the applications of it.			
		OR		-	
8	a)	Explain the working principle of Induction	L2	CO1	7 M
		welding of plastics. List the advantages and			
		limitations of it.			

	b)	List the application, advantages and	L1	CO1	7 M				
		limitations of Ultrasonic welding.							
UNIT-V									
9	a)	Explain the causes of residual stresses in	L2	CO4	7 M				
		welded components.							
	b)	Explain the methods of measuring the	L2	CO4	7 M				
		distortion in welded components.							
OR									
10	a)	Explain the effects of residual stresses in	L2	CO4	7 M				
		welded components.							
	b)	Distinguish between Jigs anf fixtures.	L2	CO4	7 M				